Consider a cylinder with radius r and length whose axis contains points q0 and q1. Let L(t)=p0+t(p1p0) be a line passing through points p0 and p1, and cL=p0+tc(p1p0) be the point in L closest to the cylinder axis and cc the point in the cylinder axis closest to L. If the distance f between the closest points is smaller than the cylinder radius, a value δ can be added to and subtracted from tc to find the intersection points i0=L(tcδ) and i1=L(tc+δ) on the surface of the cylinder.

Cylinder line intersection

The line and the vector orthogonal to the line and the cylinder axis (i.e. their cross product) define a plane which cuts the cylinder, defining an ellipse as their intersection. The length of the semi-minor axis of this ellipse is r, and the length of the semi-major axis is s, which is unknown.

The the value of s is inversely proportional to the sine of the angle between the cylinder axis and L. At 90 degrees, s=r. As the angle decreases, s increases.

r=ssinθ r2=s2sin2θ r2=s2(1cos2θ) s2=r21cos2θ

Let d=p1p0 and e=q1q0. Using the dot product:

de= \left( \mathbf{d} \cdot \mathbf{e} \right)^2 = (\mathbf{d} \cdot \mathbf{d}) \, (\mathbf{e} \cdot \mathbf{e}) \cos^2 \theta \cos^2 \theta = \frac{\left( \mathbf{d} \cdot \mathbf{e} \right)^2}{ (\mathbf{d} \cdot \mathbf{d}) \, (\mathbf{e} \cdot \mathbf{e})}

Continuing on the development of s :

s^2 = \frac{r^2} {1 - \frac{\left( \mathbf{d} \cdot \mathbf{e} \right)^2}{(\mathbf{d} \cdot \mathbf{d}) \, (\mathbf{e} \cdot \mathbf{e})}} s^2 = \frac{r^2 (\mathbf{d} \cdot \mathbf{d}) \, (\mathbf{e} \cdot \mathbf{e})} {(\mathbf{d} \cdot \mathbf{d}) \, (\mathbf{e} \cdot \mathbf{e}) - \left( \mathbf{d} \cdot \mathbf{e} \right)^2}

Our ellipse equation is

\frac{g^2}{s^2} + \frac{f^2}{r^2} = 1

where f is the distance between \mathbf{L} and the cylinder axis and g is how much the closest point on \mathbf{L} must be offset to lie on the surface of the cylinder. Solving for g :

g^2 = s^2 \left(1 - \frac{f^2}{r^2} \right) = \frac{r^2 (\mathbf{d} \cdot \mathbf{d}) \, (\mathbf{e} \cdot \mathbf{e})} {(\mathbf{d} \cdot \mathbf{d}) \, (\mathbf{e} \cdot \mathbf{e}) - \left( \mathbf{d} \cdot \mathbf{e} \right)^2} \frac{r^2 - f^2}{r^2} = \frac{(\mathbf{d} \cdot \mathbf{d}) \, (\mathbf{e} \cdot \mathbf{e}) (r^2 - f^2)} {(\mathbf{d} \cdot \mathbf{d}) \, (\mathbf{e} \cdot \mathbf{e}) - \left( \mathbf{d} \cdot \mathbf{e} \right)^2}

The value of g is a measure of length, while \delta is a fraction of the length of \mathbf{d} . To obtain \delta , g must be divided by the length of \mathbf{d} .

\delta = \frac{g}{\| \mathbf{d} \|} \delta^2 = \frac{g^2}{\mathbf{d} \cdot \mathbf{d}} \delta^2 = \frac{(\mathbf{d} \cdot \mathbf{d}) \, (\mathbf{e} \cdot \mathbf{e}) (r^2 - f^2)} {(\mathbf{d} \cdot \mathbf{d}) \, (\mathbf{e} \cdot \mathbf{e}) - \left( \mathbf{d} \cdot \mathbf{e} \right)^2} \frac{1}{(\mathbf{d} \cdot \mathbf{d})} \delta^2 = \frac{(\mathbf{e} \cdot \mathbf{e}) (r^2 - f^2)} {(\mathbf{d} \cdot \mathbf{d}) \, (\mathbf{e} \cdot \mathbf{e}) - \left( \mathbf{d} \cdot \mathbf{e} \right)^2}

Now the first and second intersection points \mathbf{i}_0 and \mathbf{i}_1 can be calculated using \delta .